

Some Aspects of Vision 2030

Conference On Security And Cooperation In South Asia: *A Global Perspective* October 8-10, 2007 Berlin, Germany

Dr Shaukat Hameed Khan Planning Commission Government of Pakistan Islamabad

Developed, industrialized, just and prosperous Pakistan through rapid and sustainable development in a resource constrained economy by deploying knowledge inputs "

The Historical Context for Vision 2030 Playing Catch-up:

Earlier Exercises and Studies

Germany with the UK: ~140 years ago: (*Gerschenkron*, 1962)

History's Most Ambitious Benchmarking Exercise: Dec 1871 Meiji Japan's blueprint for a modern state. (*Morishima*, 1982

Western Europe and the US:

Concepts of "technological congruence" & "social capability" to characterize the situation for latecomers (Abramovitz, 1994)

The Pacific Rim Countries and now China

Six Themes for Vision 2030

- The Global Imperatives and Societal Transformations
- The Just and Sustainable Society
- The Innovative Society:

Knowledge, Technology, and Competition

- The Prosperous Society
- Macroeconomic Framework
- The State; its institutions and Instruments

Perils of forecasting ! (the 640 K syndrome)

The Techno-Economic- Knowledge Revolution

- Dispersion of information and technology
- The changing nature of work and the workplace
- Massive Realignment of Economic Activity:
 - Economic liberalization

- Technological advances
- Capital market developments
 - Demographic shifts
- Centers of economic activity are shifting profoundly, not just globally, but also regionally.
- Relocation of manufacturing, services and design activities

Major Challenges for Pakistan

- **Depleting Natural Resources** : water, land, energy
- The Demographic Transition
- The 24 / 7 Society
 - The city of the future as a self-sustaining unit
 - Urban and rural economics ?
- The Looming Global Mono-culture
- Global Race for Talent

2. Changing Share of High-technology in Manufacturing, by Country / Region: 1990–2003

The United States, China, and other Asian countries have Shifted into high-tech manufacturing more rapidly than the EU and Japan

Asia-8 includes S. Korea, Taiwan, Thailand, Philippines, Malaysia, Singapore, Indonesia, and India

Source: "SEI 2006" National Science Foundation USA

3. China's R&D expenditures relative to those of USA, Japan, and EU-25 [1991–2003]

Chinese R&D investment, 1991 to 2003: Average annual increase >> USA, EU 25, Japan

EU = European Union

NOTE: All data calculated by Organisation for Economic Co-operation and Development (OECD) with purchasing power parities.

Source: "SEI 2006" National Science Foundation USA

3. Shift in Global Labour Skill Levels

Example:	Irish Workforce, Educational Attainments (%)						
	1972	1982	1992	2002			
Primary	50	36	22	8			
Secondary	21	24	28	28			
H. Secondary	20	24	29	28			
Tertiary	9	16	21	35			

Ease of Doing Business:Pakistan ranks at 76 out of 180 countries.
Rankings of the famous BRIC economies?Brazil at 122, Russia at 106, India at 120, China at 83.Vietnam is at 91[Ref: World Bank, Doing Business 2008]

Bandwidth Connectivity as seen from the USA

Teledensity at present in Pakistan is ~ 45 % of the 160 m population (over 71 million connections, growing 2.8 - 3.0 m / month)

Ref: Rehmatullah et al. Stanford, 2005, The Pinger Project

- The Demographic Transition
- The Habitat and Loss of Diverity : Water, Land, Climate Change, Food and the Environment
- Food Security
- Urbanisation
- Education and Skills: Shortages, gaps
- Energy and Security: Competition, or cooperation

Current Population: 160 m 224 - 260 million in 2030 (over 60 % urban)

Different times of peaking The demographic transition is a unique event In Pakistan. It has never happened before, and once completed will never happen again. We are living it now.

Rich countries grew rich <u>before</u> they became old.

- Globally, urban dwellers exceeded those in rural areas for the first time in human history in 2006 ... Shenzen in China
- Pakistan's urban population : from 55 m to 135 m (2030)
- More and more settlements will grow into their equilibrium size optimal and functional hierarchies

More and more of the economic power is concentrated in mega-cities with more than 10 million inhabitants

Klaus Klienfeld, CEO Siemens, 2006

The Looming Water Shortage in Pakistan

Current storage capacity World average : 9 % of avg annual flows: 40 % of avg annual flows

Year	Population (m)	Water / Capita (m ³)
1951	34	5650
2003	146	1200
2010	168	1000
2030	230 - 260	770 - 680

Climate Change & the Monsoon Model

- The cropping intensity for major crops in Pakistan: (twice the 75% assumed in the Indus Basin Treaty)
- Total arable land : 22 million hectares
 - 11 % declared 'disaster area' because of severe waterlogging and salinity (water table only 0 – 5 feet)
 - 20 % under stress (water table 5–10 ft below the surface).
 - Overpumping of the aquifers: Islamabad / Rawalpindi :~ water table fell by 1-2 meters/year (1982 to 2000)
 - Severe pollution in cotton growing areas

Green Revolution essentially over

Outpu

Food Security / Crop Improvements expected

Changing Dietary Habits !!

- Fed ourselves & exported 1-2 m tons nearly every year
- Case of Cotton from NIAB !

Inputs

The gene revolution

Need to make the <u>accumulation of knowledge</u> and <u>collective competence</u> the driver of economic growth.

How do we pay for all this? The Tradition of Waqf?

Ref: MTDF 2005-10

Maintaining the societal infrastructure? Produce more goods, services, food etc etc ?

[Ref: EFA Global Monitoring Report, 2003-04, except Pakistan (Min. of Edu. 2006)

Share of Technical Education as Percent of Total Allocation for Education

OR

Sc	ome Current	Nodes of Excellence in ICT
Sao Paolo	el	Banking
Moscow	Pa	attern recognition,
Beijing		Speech recognition,
Helsinki/Stockholm	n M	obile communications,
Seoul		LCDs,
Tokyo		High density DVDs,
Taiwan		Organic LCDs,
Boston		Gene diagnostics/distr. storage systems,
Austin		Optical networks

What innovations and centres of excellence will Pakistan be noted for in 2030?

Unplanned pathways: S&T as change agent

- Low confidence in market mechanisms
- > Key Considerations:
 - Energy Efficiency / Conservation : (T&D), Devices
 - Environmentally friendly
 - State Intervention:
 - Diversify the energy mix
 - Reduce imports
 - Explore & acquire resources
 - Help build structures for cooperation

Fossil fuels : Prime source for the foreseeable future

Energy Profile

Total Primary Energy = 56 MTOE in 2006 360 MTOE by 2030

- Power Generation : from 19,540 MW to 162,590 MW
- <u>Ratio</u> (primary commercial energy growth rate) : (GDP growth rate)
 1980 2005 :: 0.97
 2001 2006 :: 1.02
- Projected energy growth : 7.2 % p.a. up to 2010 8.8 % thereafter (infrastructure, HRD)
- > Major Shift Planned: coal, nuclear, and renewables

Ref: Vision 2030 ; Energy Security Plan, 2005

Pakista

76

Pakistan's Projected GDP Rankings, 2005 – 30

[Ref: World Bank, Doing Business 2008]

ENERGY SUPPLY MIX, 1993-2006 (MTOE)

Fiscal years ending 30th June

ENERGY GAP, MTOE

						ΜΤΟ
	2005	2010	2015	2020	2025	2030
INDIGENOUS SUPPLIES	39.38	59.94	66.70	81.85	110.43	153.79
IMPORTED OIL	14.66	18.80	30.33	43.27	55.73	63.55
IMPORTED COAL	1.00	2.00	2.00	2.00	2.00	2.00
GRAND TOTAL	54.04	80.74	99.03	127.12	168.16	219.34
DEMAND	53.78	79.55	122.96	176.63	255.37	361.47
GAP	0.00	0.81	25.93	51.51	89.21	144.13

25

Indigenous Resource Projections

	On- Shore	Off-Shore	Total
Total Prospective area (sq. km.)	605,978	221,290	827,268
No of wells drilled (57 years)	1,383	13	1,396
Drilling density * (No. of wells / 1000 Sq.Kms)	2.28	.059	1.69

*World Avg. Drilling Density (wells/1000 Sq.Kms): ~10

Canada?

Energy Resource Potential of Pakistan

	Oil , MTOE)	Natural Gas	Coal, MTOE
	(b. barrels)	MTOE (Tr. CFT)	(b. tonne)
Resource potential	3,622	6,849	82,695
	(27)	(282)	(1850
Proven recoverable reserves	113 (0.84)	1,023 (51.532)	886 (1.98)
Cumulative production,	72	410	~89
	(0.54)	(18.714)	(~0.20)
Remaining recoverable reserves	41 (0.31)	612 (32.819)	797 (1.78)
Annual production	3.2 (66,079	27.9	2.1
	barrel/day)	(1.345)	(4.587 m tonne)
Reserves : production ratio	13 years	22 years	~ 400 years

Ref: Vision 2030

PLANNING COMMISSION

Indigenous Supply Projections

Coal Reserves, Billions of Tons					
United States	247	India	93		
Pakistan	185	Australia	79		
Russia	157	Germany	73		
China	115				

Oil R	eserves, Billion	Saudi Arabia + Iran	
1	Saudi Arabia	264	= 402 B. Barrels of Oil
2	Canada	179	- Thar Coal Reserves
3	Iran	138	
4	Iraq	115	= 850 TCF of Gas
5	Kuwait	101	

The Coal Environment

USA: 100 New Coal Plants, 500 MW avg, capacity announced during 2000-04

Pakistan Meteorological Department

India: Coal Share: 67% in 2002, 47% in 2032 (~4 x absolute)

16 Jon 2001 0.17.21 hour

14:04

Wind: 43,000 MW possible (Gharo, MirpurSakero, Talhar Sindh) Planned (MW): 880 (2010), 3150 (2020), 9700 (2030)

Solar:Solar

Biofuels:Cars to run on at least 2 fuels (gasoline,
CNG, ethanol);Biogas plants .

Profitability and Environmental Impact in State of Flux:

- Fuel prices, Feedstock cost /availability, Government regulation, and Conversion technologies.
- SUBSIDIES
- NOx emissions from bio-diesel?

Nuclear Matters

Nuclear	CAPACITY	CUMULATIVE
EXISTING	400	400
ADDITION 2020	2500	2800
ADDITION 2030	6000	8800

* KANUPP retires in 2019

 Global : 53 % energy expansion expected by 2030 (IEA 2006)

• 435 NPPs, 370 GW, 16% of world capacity

- **Expansions : OECD, USA, Japan, Asia**
- Availability of uranium: Once through50 Years?
- Waste, Safety

1. Assured Supply vs Proliferation

- More states with NPPs
- Equitrable & Accessible to all potential users

3. NPT and the NSG:

- US-Indian Nuclear Agreement? Energy & Weapons
- National & International Laws: Disregard

3. Role of IAEA

- International Cooperation / legal Framework
 - Nuclear Islands
 - Int. Nuclear Fuel Centres / Common Reserves

Energy Mix Plan Projections

	Current		Short Term		Med Term		Long Term	
	2004		2010		2020		2030	
Category	ΜΤΟΕ	%	ΜΤΟΕ	%	ΜΤΟΕ	%	ΜΤΟΕ	%
	50.8	100	79.4	100	177.4	100	361.3	100
Oil	15.2	30	20.7	26	45.5	25.7	66.8	18.5
Natural gas	25.5	50	39.0	49	77.9	44	162.6	45.0
Coal	3.3	6.5	7.2	9	24.8	14.0	68.7	19.0
Hydro	6.4	12.7	11.0	13.9	21.4	12.1	38.9	10.8
Renewable	0.00	0.0	0.8	1.1	3.00	1.7	9.2	2.5
Nuclear	0.4	0.8	0.7	0.9	4.81	2.7	15.1	4.2

- Growth rate of primary commercial energy:
- China: For 2000-2005, the average was 9.96 per cent (slightly higher than the GDP growth rate of 9.5 per cent p.a)
- India : ~ 4.5 % p.a projected up 20 2032 (Kakodkar, 2004)

Issues:	Greater dependence on fewer suppliers
	Risk of disruptions in transit
	Major investments in both producing and consuming countries

Mitigating Vulnerable Supply Routes

Gas Projects, Pakistan as Energy Hub

Thank You